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ABSTRACT

Functional RNA elements (FRE) in post-transcriptional regulation of gene esipreare often

correlated with distinct RNA structures since FRE must fold into theipaemnformations in

which cell factors can recognize and interact with them. Recent commuaihstudies indicate
that the structures of FRESs are both significantly more ordered and thermodyihastadale than

anticipated at random. This is because of evolutionary constraints and ingingitural proper-
ties. Various computational tools for discovering well-ordered RNA strestand their structural
motifs have been developed and a number of functional structured RNA elementsdesvde-

termined. Here, we summarize recent efforts in the discovery of steatRE within complex
genomes by computation.

INTRODUCTION

Complete genomic sequence data are accumulating at an unprecedented pace. aNidislese-
guences of pathogenic bacteria and human genomes provide the fundamental information useful
for us to explore biological properties, such as regulation of gene expression. AlthougisRN
transcribed as a single-stranded, almost every RNA molecule has strti@tiiacludes various
double helical, base paired regions formed by fold-back in the correct antgdamaéintation be-

tween complementary segments. In addition to Watson-Crick A:U and Gelaas, wobble G:U

and other non-canonical base pairs also contribute to the structural constrégsecondary and
tertiary structure of RNA molecules.

Recent advances in studies of non-coding RNAs (ncRNAs) and RNA interfereNeée)(iRdi-
cate that RNA is more than a messenger between genome and protein. The ncBNAslaed
in various regulatory mechanisms of gene expression at multiple levels [1-&].dd¢umented
instances include transcriptional mediation, RNA processing and modificatioNAnsRability
and localization, and translation of mMRNA into protein [2, 6-10]. The functiomattired RNAs
(FSRs) that can perform the regulatory activity comprise transfer RNsomal RNAs, self-
cleavage ribozymes [2], small microRNAs (miRNASs) [2, 3-5] and various Rigulatory ele-
ments, such as iron-responsive element (IRE) in the non-coding region (NCRjih i@mRNAS
[11], internal ribosome entry sequence in the 5° NCR [9] and cis-acting RNAezi&mnnvolving
in nuclear mMRNA export, such as Rev response element (RRE) of HIV-1 andtotimstirans-
port element (CTE) of Mason-Pfizer monkey virus [8]. The known biological functionsRNAc
continue to grow and newly discovered miRNA genes are one of the new classegllatogy
genes in animals. The 22 nucleotides (nt) miRNAs can control gene expression by binding to
complementary sites in the 3 NCR of target mRNAs [12]. It is interestongdte that miRNA



precursors are of 80 nt in length and form a conserved fold-back stem-loop structure across the
divergent species in which the conserve@®2 nt miRNA sequences are within one arm contain-
ing at least 16 base-pairings [13]. Intriguingly, about a hundred distinct miRNA geredban
determined inCaenorhabditis elegans [36] and estimates for the number of miRNAs may range
about0.5 — 1% of total protein-coding genes. It is conceivable that there are a large number of
various FSRs in each genome. The FSR molecules are expected to be clzadttgvarious
structural motifs represented by specific combinations of base pairings andwezhsacleotides

(nt) in the loop regions.

A complete understanding of a FSR requires a knowledge of its 3-D structure. Theaideter
tion of its RNA 3-D structure is a limiting step in the study of RNA structtuaction relationships
because it is very difficult to crystallize and/or get nuclear magnetic resernspectrum data for
large RNA molecules. Currently, a reliable prediction of RNA secondary arity structure
from its primary sequence is mainly derived by phylogenetic comparisons withaddienzyme
probing and the sensitivity of nucleotides to chemical modification [14-16]. The phylaogenet
method has been demonstrated by successful predictions of RNA structures fs, tRBland
16S rRNAs, RNase P RNAs, small nuclear RNAs (snRNAs) and other RNAR, agigroup |
intron. Although dynamic programming and energy minimization methods [17-23] for predicting
RNA structure are not as successful as phylogenetic comparative methods,riheymarformed
fast and automatically by computer. With improvements of the dynamic prognagrafgorithm
and parameters for the free energy of formation of RNA structural elemen®®)% of known
base-pairs are predicted on average in optimized structures by the wakk$pFeOLD program
[19-20]. The computed RNA secondary structures from MFOLD are often takenr&swy mod-
els that are further refined by multiple methods including experimental methods or phgtmge
comparisons. Moreover, computational methods for analysis and detection of F&Rs\a&de
a great progress recently. A number of tools [24-35] such as tRNAscan-SE, RNARHM-
gol, PatScan, Segfold, EDscan, SigeED, RNAMotif, and ERPIN have been dededopkehave
practical applications to the search for FSRs, such as tRNA genes, ssgoghition particle and
IRE. Some new computational procedures have been developed for identifying miRiiddee
in worm and fly [36-37]. Here, we discuss recent efforts in the discovery &sHS genomic
sequences by computation.

FSRs are Uniquely Folded

RNA structure comparison and analysis from numbers of laboratories show thatspeciéc
combinations of base pairings and some conserved loop sequences in stem-loops afeumore
dant in FSRs [38-41]. For example, analysis of a large number of ribosomal RNAs, sdé%a
and 23S rRNAs, identified three classes of 4-nt terminal loops, or tetraloops BAGNNCG



and CUYG. In addition to rRNAs, GNRA tetraloops are also frequently fourskifisplicing ri-
bozymes and RNase P RNAs. The specific base-pairing and stacking impbgated-canonical
base-pairings G:A, A:G and R:R has also been found in loop E of eubacteria 5&rRKA so-
lution and crystal structures & coli 5S rRNA segments including loop E display a well-ordered
structure characterized by the major groove narrowing and larger crasstslistances in the cen-
tral portion of loop E in which 4 out of 9 base-pairings are involved in non-canonisatpairings
[64]. It includes 2 G:A base-pairings as well as G:G and A:G. Also, the didtiaee-pairing and
stacking participated by non-canonical base-pairings and/or bulges are a commsturatmotif
found in rRNAs, ribozymes and other various FSRs, such as IRE and HIV-1 reguééments
RRE and TAR. On the other hand, phylogenetic conservation in FSRs is more imptéssi that
observed in the structural motifs of proteins. Statistical analysis iteidhat there are about 15
invariant nts in a 76-nt tRNA molecule. Based on the observation of the distmuctural features
it was suggested that FSRs possess well-ordered conformations that are batidihmeamically
stable and uniquely folded [42].

To test the hypothesis, computational experiments were designed to explore theoraojut
constraints of the conformation folded in FSRs. Schultes et al. [43] computerdhemtitative
measures to estimate the stability and uniqueness of RNA secondary ssunzisesl on the mean
length of stems and total number of base pairs in the predicted structure frorffoRINIE8] and/or
VIENNA [21]. The comparison of three scores computed from various FSRs anddhdiomly
shuffled sequences indicates that the well-ordered conformations found in the nk@&Refare
unlikely to arise from evolutionary modification only. Their results show thatwell-ordered
conformation of FSRs is expected to be rare in the conformation space foromec fpopulation
of the related random sequences.

It is evident that we must inspect the structure morphology in detail to evahmatructural
uniqueness more precisely. Recently, a novel algorithmimatch) for computing similarity be-
tween RNA structures was proposed [44]. In the structure comparison, eachdasehelical
duplexs and each nucleotide in single strands are examined and the maximaitgisttae (MSS)
between the two structures is computed. Using the quantitative measuretidSBiiqueness of
an arbitrary RNA structure can be estimated by evaluating the differeetween the average
MSS computed from a natural RNA and its related, randomly shuffled sequencds®oardMSS
computed from random versus random sequences [45]. In the comparison, a standasdaed z-
Stser is introduced and defined @ scr = (RR — NR)/std, where NR is the sample mean
of computed MSS from the real RNA structure and a set of structures prediotaddndomly
shuffled sequence& R andstd are the sample mean and sample standard deviation of those MSS
computed from the previous random structures versus the additionadom structures with the
same composition and size as the natural RNA. Thus, the greatgtdhe the statistically more
unique is the well-ordered structure of the natural RNA.

In a computational test experiment on 100 tRNAs, the comptited- were high and th&tscr
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values averaged t294 + 1.02 indicating that the structural conformations of the natural tRNAs
was significantly different from those of corresponding random structures, the unigusrtes
common cloverleaf structure was statistically significant. Also,rérelom tests for other FSRs
including RNase P RNAs, TAR and RRE of HIV-1, IRES of HCV and ribozyme shoWwatithe
FSRs had well-ordered conformations that were unlikely to occur by chancee Tdsts strongly
support the hypothesis that the well-ordered structures of FSRs are both thermodiyastable
and uniquely folded. It also indicates that the measurement of thermodynamiaystbihe is
not enough for us to characterize the structural features folded in the FSRs dé8sist of a
well-ordered folding sequence (WFS).

Computational Strategy and Tactics in Finding FSRs

In addition to the development of efficient algorithms for predicting RNA high-odistaicture
from the primary sequence, the another major goal of RNA structure computatiodisctyver
potential FSRs in RNA sequences, and to correlate them with known expeairperperties and

to suggest candidate sites for further experimental study. Currently, theoeeective compu-
tational approach to detect FSRs that lack sequence or structure homology to on&rdvime
FSRs. In general, computational prediction of potential FSRs in genomic sequsriaeber
verified by experimental testing of expression levels, functional assay Ibtiateor mutagene-
sis and structural analysis. Currently, our computational strategy is aftéelimit the potential
FSR in a RNA sequence by searching for WFSs or unusual folding regions (UFRs). k&om t
WEFSs detected by a robust statistical inference we then explore the conmncre features in
homologous RNAs. Once the WFS is found to be both significantly stable and phylogenetically
conserved it can be selected as a candidate for potentially FSR elentenhomologous FSRs
can be searched from sequence databases by pattern search tools based onpootilarhse-
guence and the high-ordered structure of the experimentally verified FSR. @cs tased in the
procedure are summarized in Fig. 1.

Discovering WFSs in a Genomic Sequence

WEFSs can be characterized by the thermodynamic stability and distinct catfomof the struc-

ture folded in local segments within a genomic sequence. Previously, WFSofteesearched

by computer programs Sigstb and Segfold [33]. Sigstb and Segfold are used to expiaitla
sequence by choosing successive fragments and comparing the computed free erer@cof t

tual sequence to a number of randomly shuffled sequences of the same size and composition.
The highly stable or unstable regions are statistically inferred and temmeslal folding regions
(UFRs). It has reported that the detected UFRs in HIV-1, HIV-2, and ot#llated viruses are
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Figure 1: Procedure of discovering FSRs in genomic sequences. Faitsdet the programs EDscan [34], Sigstb, Segfold [33], Sig85],
RNAGA [57], RNAMotif [28] and HomoStRscan [58] see previgusblications.

coincident with the RRE and TAR[46-51].

In a recently developed computational tool EDscan [34], we used a quantitaasung,; ;
to evaluate the quality of an arbitrary WFS. The meaduye,(S;) of a given RNA segmenty)



is defined as the difference of free energies between the folded global mimerglyestructure
(E(S;)) and its corresponding optimal restrained structure (ORS) in which alprndous base
pairings in the global minimal structure are forbiddé#y (S;)). We have

Eairs(Si) = Ep(S;) — E(Si)  and

Eaigs(Si) — Faigy(w)
Zscro(S;) = =2 () 11

whereEy;r(w) andstd(w) are the sample mean and standard deviation, respectively, of the
Eq; s scores computed by sliding a fixed-length window in steps of a few nt from 5’ to 3’ along
a RNA sequence. It is clear that the scdfecr.(S;) is a z-score, a standardized measure of
Eqirr(Si). We expect that the greater thcr.(S;) of the segmens;, the more well-ordered is
the folded RNA fragmens,.

EDscan utilizes a dynamic programming algorithm and Turner energy rules [18, 20nfmute
Eqirr(S;) and Zscr.(S;) by scanning the RNA sequence. In searching for distinct WFSs in the
sequence, we often take following steps. Aijcr.(S;) is computed by sliding a window with a
chosen size, for instance 80 nt in searching miRNAs, along the sequence. Th&piotenéesting
regions with highZ scr.(S;) are chosen based on the statistical distributio#f afr.(S;) (1 < i <
N — W + 1) computed by EDscan, where N and W are the length of the sequence and the sliding
window. (ii) The precise locations of those potential targets in which the fdttedture is highly
well-ordered are inferred by an extended search in the regions determonedhie step 1. In the
extended search, the distributionsticr. in the selected regions are repeatedly computed by a set
of windows whose size is systematically changed over a range of sizes (e.g. 60-hBRNAS).

The maxima ofZscr.(S;) are extracted to determine the optimized WFSs. (iii) The statistica
significance of the computed WFSs is further tested by Monte Carlo simulaboexBmple, we
may repeatedly compute tbgscr.(S;) distribution in the randomly shuffled sequences using same
procedure and parameters as used in the calculation of the natural sequenegi(seetion). The
expected probability of a WFS detected in the natural sequence can be edfioatéhe random
test.

Statistical Extremes of WFSs in the Sequence

To estimate the statistical extremes of WFSs in a long sequence, wa igeed statistical model
to describe the distribution dfscr. in a large sample. Statistical analysis indicates thatthe,
data show asymmetry with sample means= 0, sample standard deviatiostd = 1.0. The distri-
bution of Zscr, is skewed toward the positive direction with a long tail and it is not Wedd by
a normal distribution (see Fig. 2). To well estimate the statistigalificance ofZscr, for a given
RNA segmentS; we need to know what is the general behaviolgf; ;(RS;) of a set of random
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Figure 2: Empirical probability density functions of scr. scores computed from 50 random sequences of 2500-nt. Theieahpar
functions are plotted with step size &fscr. = 0.05. Zscr. were computed by sliding a 80-nt window stepped with 5-nhet@oe along the
randomly shuffled sequence.

sequences}S; 1, ... ,RS; ,, that are made by randomly shuffling the local segntemather than
the complete sequence. In a novel method SigED [35], a standard z-S¢giecr.(S;) was em-
ployed to evaluate the statistical significance of the energy differepge(S;) computed from the
segment;.

Eaiss(Si) — Bais (RS;)

SigZscre(S;) =

whereEy; s (RS;) andstd(RS;) are the sample mean and standard deviatiolf; (RS, 1),
oy Eairr(RS; ). AN Eyirp(RSin), ..., Eaigr(RS;,,) are the m values of energy difference
computed from the m randomly shuffled sequené&s,;, ... ,RS; ,,. It is important to note that
randomizations are done by shuffling so that the same base compositions and sizemagdhe
fragmentS; are maintained. Similarly, we have
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Eairs(RSi;) = Ef(RSi;) — E(RS;;) (1< <m)

where E(RS; ;) is the lowest free energy of the random fragmét; ; and E;(RS; ;) is the
minimal energy computed from the ORS BF, ; in which all the previous base pairings formed
in the lowest free energy structure are prohibited.

To facilitate statistical inference for distinct loops and base-pagkstg, the measutg,; s, can

be divided into two partsiystemy; sy and Eloopgs ¢, to characterize the structural features of the
base-pair stacking and loops, respectively. Wheseern,; ¢ is defined as the energy difference
contributed by base-pair stacking only between the lowest free energyuséractd its correspond-

ing ORS.Eloop,isy is defined as the energy difference contributed by loops only between the two
structures as mentioned above. Furthermore, we can define the other twoditaattarscores,
SigStem,(S;) andSigLoop.(S;) for the given segmers; [35]. The two z-scoresSigStem,(S;)
and SigLoop.(S;) are helpful in discovering distinct loops and significantly unstable folding re-
gions. The method SIgED is used to infer statistical extremes of WFSs by cowpply 2 scr,,

SigStem, andSigLoop, with scanning successive segments along a nucleotide sequence.

Prediction of Common RNA Secondary Structures

A number of computational methods [52-56] for predicting common RNA secondary structure for
a set of related RNA sequences have been proposed. Most of these methodshstasieivif pre-
dicted RNA structures computed from their related RNA sequences by a thernmaidyshanamic
programming algorithm and their multiple sequence alignment. The predicted hiesggare
gradually refined by the analysis of sequence covariation or mutual informatibats® common

RNA structure for the set of RNAs is emerged. The recently developed prograsGRN67] is
different from other approaches. The method RNAGA employs a genetic algorithiitgGAarch

for a common secondary structure without the need for pre-aligned homologous RNA sequences
One of the remarkable features of RNAGA is that RNA secondary structuresutomatically
optimized by not only the free energy of the formation of the structure but alsortlestl simi-

larity among homologous sequences [40]. The program is a three-step procedure. &t shade,

a GA is used to generate a population of RNA secondary structures that satisiiyy conditions

of thermodynamic stability. In this step, the free energy of a folded structuragken as a fit-
ness criterion. Secondly, the structural similarity between any twatsires within the population

of RNA secondary structures is computed. With the quantitative measure dusalugimilarity

as the fitness criterion, a GA is then used to improve the structuraksitpiamong homologous
RNAs for the structures in the population of a sequence. Finally, those strutttateatisfy certain
conditions of thermodynamic stability and structural conservation are sglastpredicted com-
mon structures for a set of homologous RNAs. As a result, RNAGA solves the aligpmodlem



of multiple sequences and the folding problem of common RNA structures simultanedtsly
program also ranks the predicted common structures based on the structulaitgiscore in
descending order. In a test including a set of 20 tRNA sequences, 25 5S rRNAs; I7 RRES
and 10 RRE of HIV-2 and SlV, fairly convincing common secondary structures olgiained by
RNAGA in the top 10 ranked solutions [57].

In the method, a secondary structure is considered as an individual in the populatioac-A s
ture is encoded as a set of stems, such as{s, ss, - - -, s, }. A random structure in the sequence
is produced by randomly choosing a stepfrom the stem list consisting of all possible stems
occurred in a sequence. In the structure construction in the first step of theaappa stem can
be added to the structure only if the addition of a stem increases the struetbitiystotherwise
the addition is determined by the Boltzmann rule. The process is repeatedaagaagain until
no more such stem; can be added from the stem list. In the optimization, RNAGA operates on
a population of tentative solutions by crossover and mutation operators. Thusspringffof the
two parental structures is constructed by crossover and/or mutation on tindgbateictures.

Database Search for RNA Structural Motifs

Over the last decade the computational search methods for distinct RNA sttuoitifs have
made great progress. A number of database search tools have been developed aratteake pr
applications to the search for known FSRs and their homologues [24-32, 58]. In genesal, t
pattern search tools can be divided into two groups. Tools in the first group agaees$o search
for a specific FSR, such as tRNAs. Among them, the method tRNAscan-SEyiefiieient and
successful in finding tRNA genes in complete genomes [32]. The methods in the secondrgroup
designed and optimized to find general RNA structural motifs. Most of theseitalgsrprovide

a descriptor that can describe the RNA structural elements of known FSRspattkia search
algorithm to match and score the patterns found in the genomic sequence. The rdeesithped
algorithm, RNAMotif [28] is more powerful and efficient than others. A significanprovement

in RNAMotif is that its descriptor can specify any type of base-base ictieraand RNA struc-
tural element. Also RNAMotif provides a user controlled scoring systemcdratbe used to add
capabilities in the pattern matching.

The main shortcoming of pattern-based search tools is a general inabilitgdiporate infor-
mation of sequence and structural feature in detail. Holbrook and colleagues Y&3ptogposed
a general computational approach to identify FSRs in genomic sequences using nevwgd ne
simulations. We recently developed a novel algorithm, HomoStRscan, ohggafor homolo-
gous FSRs by scanning a genomic sequence [58]. HomoStRscan differs from otherycuseatl
approaches in considering each base and base pair in the query RNA. Among theypeaofy
base-base interaction is allowable. The algorithm finds the most similetste to match the



guery structure in an arbitrary segment in the target sequence. The sizeaobitinary segment
ranges near the length of the query RNA, and can be flexibly controlled by users. téBigzul
ously, the MSS between the query RNA and each computed matching structuren&rdarget
sequence is calculated. The homologous RNAs are then predicted by robustatatisgrence
from the MSS distribution computed by moving a window along the target sequence. Hdws,
moStRscan can be used to search in the genomic sequence for any RNA mespooding to
an established secondary structure. Computational test experiments i@l seveplete bacterial
genomes proved to be very effective in finding ncRNAS, such as tRNAs andNd&srf88].
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Figure 3: Y-shaped stem-loop structure computed in the 3’ portiohef’ UTR of human elF4G mRNA. The Y-shaped motif is denoted by
Stem A, B and C. The short 18S rRNA-complementary sequeriabeted by the character *.

10



Discovering Functional RNA Elements

Functional Structured Elements in the 5’UTRS

Experimental studies revealed that a special region called the intdsaabme entry segment
(IRES) allowed the translational machinery to skip over upstream Al9{zs'he IRES elements
detected in cellular mMRNAs are quite divergent and their sizes rangetittentranslation at the
correct codon from~ 100 nt in human immunoglobulin heavy chain binding protein mRNA to
~ 630 ntin the 5’UTR of B chain of human platelet-derived growth factor. The predicommon
structural core in these cellular IRES elements shows a distinct Y-dhspm-loop structure (a
3-way junction) [59-61]. While it is still true that most mRNAs initiate trkai®on from their
first AUG there are a growing number of interesting cases where internatiiont plays a role
in regulation of expression at a post-transcriptional level. A statlsticalysis of the upstream
AUG (UAUG) in a database of 5’UTRs, UTRdb [62], indicated thats6% of human mRNAs
have no UAUG in the 5’UTR and 901 out of 6669 (14%) human mRNAs have three and more
UAUG codons. We found that a number of mMRNAs of oncoproteins, growth factors, traiscript
factors, signal transduction genes and immune or inflammation mediators have@®@ngh and
structured 5’ UTR with multiple uAUG. Using the integrated approach showdgnl, we found a
common Y-shaped stem-loop followed by a short, 18S rRNA-complementary sequenediate
to the initiator in a number of cellular IRESs and other long 5’UTRs of high G+C obrated
multiple UAUGSs (see Fig. 3, Tables 1 and 2). This common structural motif is stegjeo be
associated with the important biological role of reported cellular IRESs.

Fold-back Stem-loops of the Reported miRNA Precursors are Coincidentvith Statistically
Significant WFSs

The genome ofC. elegans is organized into six chromosomes with total size of about 100
million nts. We computed the scr, distribution by EDscan [34] by scanning the fixed-length
window of 80-nt with a step of 5 nt along each chromosome sequence. We found soméingeres
noncoding regions in which the computed WFS elements with very Bigh, were clustered. As
shown in Fig. 4 we detect those WFSs that are coincident with the well kno®NAS, mir-35,
mir-37, mir-38, mir-39, and mir-40.

Using the profile of computedscr. in the genomic sequences we can further refine the analysis
of WFS by SIigED [35]. The bes$igZscr, scores of WFSs that are associated miRNAs are
summarized in Table 3. Our results indicate that ntogtZ scr, scores are greater than 3.5 and
their expected random probability is less than 0.0002. It shows that the fold-backostesm
folded by the precursors of known miRNAs @ elegans genome are closely associated with
the statistically significant WFSs. With the additional information, stcmé&RNA phylogenetic
conservation, EDscan and SigeD can be used to search for ncRNAs in genomes.
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5’UTR Size No. of Y-shaped Structural Motif Complementary
(nt) uAUG A B C D Sequence

Human 5’UTR having Cellular IRESs

AML1 1580 15 1469-1480 1482-1520 1521-1545 N CUUGUUGUG (0 nt)AUG
//1546-1558

BiP 221 0 129-142 144-160 161-179 N ACuGGCU (6 nt)AUG
//183-194

C-myc 513 0 228-249 252-311 313-336 Y UGCUUAGAC (1 nt)CUG
//340-368 (CUG is an alternative initiator for C-myc)

eIF4G 368 4 219-236 237-259 260-296 N GAUCCaaACC(29 nt)AUG
//301-317

FGF-2 466 3 204-221 222-241 242-259 N GCGGCU (5 nt)CUG

//263-276 (CUG is an alternative initiator for FGF-2)
355-369 371-391 392-418 N GGgGAUCCcgGCC (16 nt)AUG

//420-437

PDGF2 1022 3 941-944 946-969 970-990 N GCCcggaguCGGC (0 nt)AUG
/c-sis //992-995

VEGF 1038 1 845-855 858-907 909-977 Y GGCCUCC(6 nt)AUG

//978-987

Human Cellular 5’'UTRs

abl 340 6 225-236 237-285 289-307 N GGU--ACC-UAUUAUUACUUU
(M14753) //309-321 - (0 nt)AUG

c-abl 364 0 282-294 295-320 321-338 N UGGCcGcAA-A(0 nt)AUG
(M14752) //339-355

ber 488 2 373-383 385-404 405-437 N GGCGG--CGC(9 nt)CGGC
(X02596) //445-455 - (6 nt)AUG

c-erb 333 3 118-135 138-191 192-231 Y GGCAUCC(9 nt)UUGaa
(Y00479) //232-249 -GUGA (0 nt)AUG
c-erbA-1 466 4 248-266 269-323 324-364 Y GGCAUCC(9 nt)UUGaa
(X55005) //365-382 -GUGA (0 nt)AUG

IL-15 316 10 221-233 234-244 245-277 N UAAgGAUUUACC- -GU
(X91233) //279-290 ----GGCUUU (5 nt)AUG
Int-2 491 3 396-406 410-425 426-442 Y GAUGCC(3 nt)AUG
(X14445) //445-456

mas 267 3 117-131 134-194 197-234 N CCaACCU-GaGGCcU
(M13150) //235-249 - (4 nt)AUG

mos 479 1 369-381 383-437 439-452 N AUCAUC(0 nt)AUG
(J00119) //461-473

Table 1ZY-shaped structural motif and a short complementary semuenthe 3’ end of human 18S rRNA sequence found in the cellRESs
and some large cellular 5’UTRs that contain multiple ustreAUG. The folding regions of stems A, B, and C in the Y-shapedif (see Fig. 3)
are listed in the columns 4, 5 and 6. An additional stem-lodgeBveen the Y-shaped motif and 18S rRNA-complementaryesespis denoted by
letters Y (Yes) and N (No) in the seventh column. The 18S rRiéfplementary sequences are represented by capitas lettére last column.
All of complementary sequences observed in human 18S rRRAoaated at the upstream and/or downstream single-sttared@®ns (1823-1838
and 1861-1869) of the folded hairpin structure (1839-186@e 3'-end as shown in Fig. 3.
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5'UTR Size No. of Y-shaped Structural Motif Complementary
(nt) uAUG A B C D Sequence

Mouse and Other Cellular 5’UTRs

abl-2 144 3 55-68 70-93 95-114 N UCCaGCCUCCGAC (0 nt)AUG
(U13835) //115-125
abl-3 219 0 91-101 102-136 137-153 N UAA-GGUCCuugugaGCC
(X07539) //155-166 -acgUUGUGGU (25 nt) AUG
abl-4 1168 11 1059-1068 1069-1116 1119-1133 N CACCUaUUAUuUGCUUU
(X07541) //1134-1145 - (0 nt)AUG
Rat BiP 206 0 114-126 128-141 142-157 N CCGCUgagcgACuGACU
(M14866) //158-169 - (19 nt)AUG
Hamster 150 0 64-73 74-88 89-110 N GGCCCACagcGCcGGC
BiP (M17169) //114-125 - (3 nt)AUG
int-2 864 3 776-788 789-805 806-817 Y GAUGCC(3 nt)AUG
(Yo0848) //821-833
Rat FGF-2 532 0 310-321 323-337 338-362 N GUCCgGCU(8 nt)CUG
(M22427) //363-375 (CUG is an alternative initiator for FGF-2)
438-450 452-469 470-493 N GUCCcgggGCC- - -
//497-510 ---GCGG (7 nt)AUG
Rat C-myc 413 0 71-92 94-139 143-188 Y UUAUU-UGA (3 nt)CUG
(Y00396) //194-222 (CUG is an alternative initiator for C-myc)
mas 341 5 87-105 107-145 146-189 N CCACCg (0 nt)AUG
(U96273) //193-211
mos 479 1 369-381 383-437 439-452 N AUcCAUC(0 nt)AUG
(X12449, Monkey) //461-473
Rat mos 482 2 369-384 386-440 441-458 N UAAUc (0 nt)AUG
(X52952) //464-477
Chicken 487 4 377-389 391-445 448-463 N AUCAUC(0 nt)AUG
mos (M19412) //469-481
Xenopus 483 2 373-385 387-441 444-458 N AUCAUC(0 nt)AUG
mos (X13311) //461-477
VEGF 1014 1 818-829 832-880 883-951 Y AcGGcCU-CC(6 nt)AUG
(U41383) //952-962
Bovine 533 0 352-362 365-413 416-484 Y caGGcCU-CC(6 nt)AUG
VEGF (M32976) //485-494
Yeast 528 11 438-450 453-469 470-491 N ACCUaUUAC (4 nt)AUG
eIF4G (L16923) //493-507 (Yeast TIF4631)
Yeast 528 4 437-453 455-467 468-486 N AAUaGAUCaaUUGU-Ag-
eIF4G (L16924) //490-502 (Yeast TIF4632) GCACU (0 nt)AUG

Table 2:Y-shaped structural motif and a short complementary semunthe 3’ end of human 18S rRNA sequence found in the cellREESs
and some large cellular 5’UTRs that contain multiple ugstreAUG. The folding regions of stems A, B, and C in the Y-shapedif (see Fig. 3)
are listed in the columns 4, 5 and 6. An additional stem-lodgeBveen the Y-shaped motif and 18S rRNA-complementaryesespiis denoted by
letters Y (Yes) and N (No) in the seventh column. The 18S rRidplementary sequences are represented by capitas letttre last column.
All of complementary sequences observed in human 18S rRRAoaated at the upstream and/or downstream single-sttaedens (1823-1838
and 1861-1869) of the folded hairpin structure (1839-186@e 3'-end as shown in Fig. 3.
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Table 2. The reported miRNAs i@.elegans genome and their corresponding WFS determined by EDscan and SigED.

Gene Corresponding Well-ordered Folding Sequences (WFS) SigZscr
lin-4 UUCCCUGAGACCUCAAGUGUGAGUGUACUAUUGAUGCUUCACACCUGGGCUCUCC 34
let-7 UGUGGAUCCGGUGAGGUAGUAGGUUGUAUAGUUUGGAAUAUUACCACCGGUGAACUAUGCAAUUUUCUACCUUACCGGAG 35
mir-1 GUGACCGUACCGAGCUGCAUACUUCCUUACAUGCCCAUACUAUAUCAUAAAUGGAUAUGGAAUGUAAAGAAGUAUGUAGAACGGGGUGGU 01
mir-2 CAUCAAAGCGGUGGUUGAUGUGUUGCAAAUUAUGACUUUCAUAUCACAGCCAGCUUUGAUG 85

mir-34 AGAGGCAGUGUGGUUAGCUGGUUGCAUAUUUCCUUGACAACGGCUACCUUCACUGCCACCCCGAACAUGUCGUCC

mir-35 UCAGAUCGAGCCAUUGCUGGUUUCUUCCACAGUGGUACUUUCCAUUAGAACUAUCACCGGGUGGAAACUAGCAGUGGCUCGAUCUUUUCC
mir-36 GUCGGGGAACCGCGCCAAUUUUCGCUUCAGUGCUAGACCAUCCAAAGUGUCUAUCACCGGGUGAAAAUUCGCAUGGGUCCCCGAC

mir-37 CCCUUGGACCAGUGUGGGUGUCCGUUGCGGUGCUACAUUCUCUAAUCUGUAUCACCGGGUGAACACUUGCAGUGGUCCUC

mir-38 AGGUCCUGUUCCGGUUUUUUCCGUGGUGAUAACGCAUCCAAAAGUCUCUAUCACCGGGAGAAAAACUGGAGUAGGACCUG

mir-39 GAGAGCCCAGCUGAUUUCGUCUUGGUAAUAAGCUCGUCAUUGAGAUUAUCACCGGGUGUAAAUCAGCUUGGCUCUGGUGU

mir-40 CCGCACCUCAGUGGAUGUAUGCCAUGAUGAUAAGAUAUCAGAAAUCCUAUCACCGGGUGUACAUCAGCUAAGGUGCGGGU

mir-41 UCCCAGAGACCUUGGUGGUUUUUCUCUGCAGUGAUAGAUACUUCUAACAACUCGCUAUCACCGGGUGAAAAAUCACCUAGGUCUGGAGCC
mir-42 GGACCUUUGUGGGUGUUUGCUUUUUCGGUGAAGUUGUCUUCCGUAGCUUCUUCUUCACCGGGUUAACAUCUACAGAGGUCCAAAAAGGGG
mir-43 GCCCGUGACAUCAAGAAACUAGUGAUUAUGCCAAACCACAGGGACAUAUCACAGUUUACUUGCUGUCGCGGGCGG

mir-44 GGCCAAUCUGGAUGUGCUCGUUGGUCAUAGACGUCAACACGAACUGUUCAUAUGACUAGAGACACAUUCAGCUUGGCCUG

mir-45 GUGCCACGCUGGAUGUGCUCGUUAGUCAUAAUAUCCUCCACAAAGCAAGGACUAUGACUAGAGACACAUUCAGCUUGGCG

mir-46 GCUGAAGAGAGCCGUCUAUUGACAGUUCAAGACCACGAGUCGUUGUGUGCUGUCAUGGAGUCGCUCUCUUCAGAU

mir-47 AAACUGAAGAGAGCAGUCUAUUGACAGUCGGUUACUCGAAAUCUUUACUGUCAUGGAGGCGCUCUCUUCAGAUGA

mir-48 aactctgggaatgcgagctaggctggtggatgtgagataccgttcaat TCGCATCTACTGAGCCTACCTCAagttecccgggagtt (antisense)
mir-49 AAAAGACCACCGUCCGCAGUUUGUUGUGAUGUGCUCCAAGCAAUCAUGAGUCUGAAGCACCACGAGAAGCUGCAGAUGGAGGUUC

mir-50 UGCCCGCCGGCCGCUGAUAUGUCUGGUAUUCUUGGGUUUGAACUUCCAGCGUUGAACCCGCAUAUUAGACGUAUCGACGGCCGGCGGGGC 1
mir-51 CGUCUACCCGUAGCUCCUAUCCAUGUUACUGGUCAAAAAGUGAACAUGGAAGCAGGUACA

mir-52 UCCAACUCUAACAGUCCACCCGUACAUAUGUUUCCGUGCUUGACAGCGAAGCUCAAUCACGUUACAAUGAAAGGGUAGCCGGUUAUUGAAGUUGG
mir-53 ACCCGUACAUUUGUUUCCGUGCUUGACUUCAAAGCUCAAUCACGGCACAAUAUAUGGGUC

mir-54 CGCUCUGACUAGGAUAUGAGACGACGAGAACAUUGCUUUUUUAAAAGACUUGUACCCGUAAUCUUCAUAAUCCGAGUCAGGGCUAGCUGA
mir-55 GGGACUCGGCAGAAACCUAUCGGUUAUACUUUUUGGAUAUGCUAUACCCGUAUAAGUUUCUGCUGAGCCCCUUAU

mir-56 CUGUUCUUGGCGGAUCCAUUUUGGGUUGUACCUCAUCCUAAAUUUGACGGUACCCGUAAUGUUUCCGCUGAGAACCGACU

mir-57 CUACCCUGUAGAUCGAGCUGUGUGUUUGAAACAAUCAUACACGAGCUAGACUACAAGGUGCACGAACAAACCGAA

mir-58 CAUAUCCAUUGCCCUACUCUUCGCAUCUCAUCACUUCGUCCAAUACCAUAGGGAUGAGAUCGUUCAGUACGGCAAUGGAC

mir-59 UAUGACAUCGUCCUGAAAACGAAACGGAACAAAAGUUCAAGAUAUUGAUUUCGAAUCGUUUAUCAGGAUGAUGUG

mir-60 UCUUGAACUGGAAGAGUGCCAUAAAAUCAUGACAAAGUACGUGAUAUUAUGCACAUUUUCUAGUUCAAGACUUGA

mir-61 UAUCGCUGAACCUCGAGAUGGGUUACGGGGCUUAGUCCUUCCUCCGUAUGGCAAUGACUAGAACCGUUACUCAUCUCGAGGUUUCGGUGA
mir-62 GGUGAGUUAGAUCUCAUAUCCUUCCGCAAAAUGGAAAUGAUAUGUAAUCUAGCUUACAGG

mir-63 GACACAAUUUCUAACUCGUCGGUAGUCAUCGUUCUAGCUGAAAAGGACACUAUGACACUGAAGCGAGUUGGAAAUAGUGGUUCUA

mir-64 CGCCGAAUAUGACACUGAAGCGUUACCGAACCGUUUUCCCACACCUGGAUUCGGUGCAACGAUCAGUGGCAUGCUCGGCU

mir-65 AUGGAGCCUUCGCCGAUUAUGACACUGAAGCGUAACCGAACACCAUAUUUUGAGAUUCUG. . (25 nt) . . GUUGGCUCCAUUAAA

mir-66 CCACAAAAAUGCCAUACAUGACACUGAUUAGGGAUGUGAUGAAUGUUAAGAUCCCGAUCA. . (20 nt) . .AUGGCGUAUGUGGUU

mir-67 GUCGAUCCGCUCAUUCUGCCGGUUGUUAUGCUAUUAUCAGAUUAAGCAUCACAACCUCCUAGAAAGAGUAGAUCGAUUUU

mir-68 UUUUGAAAUUCAUUUUUCUGAAUUUCACACUUUCAGUUAGUUGAUAUUAACGUUUGUAAAUAGGAUGGUAUAUUCGAAGACUCAAAAGUGUAGAC
mir-69 UUAAUUUAAUUUUUUUUUAAUUUUUAACGGGGUUAUUCAAGUAAUAUCGAAAAUUAAAAAGUGUAGACAU

mir-70 UCAAAAUARAA. . (25 nt) ..CGACGAAUAACACUUAUGAAGAAAUGUAAUACGUCGUUGGUGUUUCCAUAGUUUGAAUUGUUUAU

mir-71 CUGCUCUGAACGAUGAAAGACAUGGGUAGUGAGACGUCGGAGCCUCGUCGUAUCACUAUUCUGUUUUUCGCCGUCGGGAU

mir-72 GGUCCCGUCAGAGCUAGGCAAGAUGUUGGCAUAGCUGAAUGAUCGCUAUAACAACUAUCAGCUUCGCCACAUUCUGCCACGCACUGAUGU
mir-73 CACACACGACUGGACUUCCAUAUCGAGCCACAGCUAUCAACGAAUUUGCUGGCAAGAUGUAGGCAGUUCAGUUGU

mir-74 AAAUGGUUCA. . (20 nt) . .CUCUUUCCCAGCCUACAUCUCAACCUGGGCUGGCAAGAAAUGGCAGUCUACACGUUUUUCAACCA

mir-75 UUGCUUUGAAGAAUUGCAGUCGGUUGCAAGCUUAAAUACAAAUCCGAAUUGUUAUUAAAGCUACCAACCGGCUUCAAGUCUGAAAGAGCA
mir-76 UCCUGUCUGGGCUUCACAAUAGUCGAAUACCUUAAAUUUCAAAAUUUGGAUAUUCGUUGUUGAUGAAGCCUUGAUGGGGG

mir-77 GCCCGUUUGGAUGGUUGUGCUCUGAGGAAAUACGCACAGAAUGUCAUUUCAUCAGGCCAUAGCUGUCCAAAUUGGUAUAG

mir-78 AUAUUGUUUCAUAGUGUCCGUAAAAUAACUAGAUUUAUUUUGUAAAAACUAUUGGAGGCCUGGUUGUUUGUGCUG

mir-79 UCUCCGAUCUUUGGUGAUUCAGCUUCAAUGAUUGGCUACAGGUUUCUUUCAUAAAGCUAGGUUACCAAAGCUCGG

mir-80 UCGUUCGCUCAGCUUUCGACAUGAUUCUGAACAAUCCGCAAGCCCAUGUUGUUGAGAUCAUUAGUUGAAAGCCGAAUGAU

mir-81 GCCCAACAGUCGGUUUUCACCGUGAUCUGAGAGCAAUCCAAAAAUGCUUUUCUGAGAUCAUCGUGAAAGCUAGUUGUUGGUCUAC

mir-82 UUUAGCAACCGGUUUUCUCUGUGAUCUACAGAAUGACAGCUAAUCGUCUGAGAUCAUCGUGAAAGCCAGUUGUUU

mir-83 AACCACUGAAUUUAUGUGUGUACUUGACGGCCAACAAGAGCAUCGAUCUAGCACCAUAUAAAUUCAGUAAUUUCG

mir-84 tctcaacagaacagccgagttagttgaaacattgtggacattatagacagtcTACAATATTACATACTACCTCAg (antisense)

mir-85 GUCGGAGCCCGAUUUUUCAAUAGUUUGAAACCAGUGUACACAUAAAUGGUUACAAAGUAUUUGAAAAGUCGUGCUCUGAA

mir-86 gtgtcaaactccggectaagecgaatctgageccaggettecatttcagaacatcgaaGACTGTGGCAAAGCATTCACTTAgG (antisense)
mir-87 CAUCCGGCCGCCUGAUACUUUCGUCUCAACCUCGCUGUCAGAUUGGUCGUAGGUGAGCAAAGUUUCAGGUGUGCCGGAAC

mir-90 GCGCCAUUUCGAGCGGCUUUCAACGACGAUAUCAACCGACAACUCACACUUUUGCGUGUUGAUAUGUUGUUUGAAUGCCCCUUGAAUUGGAUGCC
mir-124 AUCUGGCAUGCACCCUAGUGACUUUAGUGGACAUCUAAGUCUUCCAACUAAGGCACGCGGUGAAUGCCACGUGGC

mir-228 CCUUAUCCCGUUCGCAAUGGCACUGCAUGAAUUCACGGCUAUGCAUAACGACAGACCGCGGAUCAUACGGUACCAUAGCGGACGGUGAUGAGGUU

-

[

[
VB OO WARUUOARWOAN®RANWARWWOLIPRUOUOOUUR IJIdUWWWOW®OIUIOWAO-dWaOU JWVWUuw-ow
S
w

Table 3: SigZscre values were computed by scanning a set of fixed-length wisd@p, 60, ..., 95, 100-nt) in steps of 2-nt along the
sequence. The computed maxinsal Z scr. was listed in the table.
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Zscr, of Local Segments Computed in the Region from Genes F62F5A.1a to F54D5.12 of C. elegans

T T T T T T
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Flgure 4: 7 ser. of local segments computed in the region from genes F62Fb6il. E54D5.12 of.elegans chromosome 1. The quantitative
measureZ scr. was computed by moving a 80-nt window in steps of 5 nt from 53'talong the sequence by EDscan. The plot was made by
plotting Z scr. against the position of the middle base of the local oveitgppegments. The end position (position 11527161 in thensbsome

Il sequence) of the gene Y62F5A.1a (antisense: 115337327161) was numbered as position 1 in the plot. The five pdakseced close to the
gene F54D5.12 in the plot are coincident with the reporte@is, mir-35, mir-37, mir-38, mir-39, and mir-40. We alsdetgted other WFSs that
were clustered toward the gene Y62F5A.1a.

CONCLUSION

Rapid advances in computational biology and bioinformatics are providing new apprdaches
complex biological systems. Advances in systems biology and molecular medkgimieer com-
bined efforts of bioinformaticists and molecular biologists. Such integratpgoaches hold
promise for elucidating gene function and RNA-based regulation of gene expressighsh&Vv
improvement of the integrating algorithms of statistical and computationad tddRNA folding,
pattern search, sequence and structure comparison, computational methods cahtbedisse
cover FSRs that are associated with important biological properties. Huefaethese kinds of
FSR discoveries is growing in proportion to the size of sequence databaseh, ambigrowing
exponentially. The ncRNAs represent an important subset of the sequence datababed i
potentially novel biological phenomena will be found. The existing tools, although alseady
cessful in finding interesting structural features of ncRNAs, can be inegréwrther by future
development.
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